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WHAT I WANT TO SHOW:� Biological systems are the ultimate information processors� HSR is a bottom–up, divide and conquer strategy

– We recognize speech based on a hierarchy of context layers

– As in vision, entropy decreases as we integrate context� Humans have an intrinsic robustness to noise and filtering

– Robustness is not due to semantic context effects
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HOW WE RECOGNIZE SPEECH?� Hierarchical “bottom up” analysis� Accurate statistical models of performance at each stage
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DEFINITIONSp

phone A consonant (C) or vowel (V) sound
word A meaningful phone or phone sequence (i.e., cat � CVC)
phoneme The replaceable set of phones which leave a word meaning invariant
recognition Probability measure P
 of correct phoneme identificationp

articulation Recognition of “nonsense words”p

intelligibility Recognition of words (i.e., meaningful speech)
robustness Relative recognition with filtering and noise
confusion matrix Table of identification frequencies Nsr � Nrjs
articulation matrix A confusion matrix composed of nonsense soundsp

articulation event A discrete subunit of articulation [e.g., Voicing: /ba/ vs. /pa/]
trial A single presentation of a set of events
state A values of a set of events at some instant of time
state machine A machine (program) that transforms from one state to another
noiseless state machine A deterministic state machine
context Coordinated combinations of events within a trial
message Specific information transmitted by a trialpn Probability of event n, of N possible events
information density In = log2(1=pn), n = 1; � � � ; N

entropy Average information: H = NXn=1 pnIn
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KEY HSR STUDIES� The first articulation experiments date from Lord Rayleigh’s 1908 and

George Campbell 1910 phoneme identification experiments� A basic probabilistic approach was developed by Stewart & Fletcher 1921

– Detailed review of Fletcher’s AI theory: Allen IEEE 1994� French and Steinberg 1947 WWII studies� Shannon’s Information theory 1948+� G.A. Miller, Heise and Lichten 1951; G.A. Miller & Nicely 1955� Language and communication G.A. Miller, 1951 McGraw Hill
Miller first introduces IT to language modeling, following Shannon� Boothroyd JASA 1968; Boothroyd & Nittrouer JASA 1988� Bronkhorst et al. JASA 1993, 2002� Van Petten et al. 1994� Detailed review chapter Allen 2003
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MOTIVATION� Results of Lippmann 1997, sorted by Error Ratio

% Error Error
Corpus Size in Words Conditions Machine Human Ratio

Alphabetic 26 20-talkers 8-listeners 5.0isolated 1.6
ontinuous 3
Resource 1000 null grammar 17 2 8
WSJ-NAB 5000 quiet (trained) 7.2 0.9 8

Switchboard 14,000 spontaneous (tel. BW) 43 4 11
WSJ-NAB 5000 10 dB (trained) 12.8 1.1 12
WSJ-NAB 65,000 close mic 6.6 0.4 16
WSJ-NAB 65,000 omni mic 23.9 0.8 30
Resource 1000 word–pair grammar 3.6 0.1 36
WSJ-NAB 5000 quiet (not trained) 42 0.9 47
WSJ-NAB 5000 22 dB (not trained) 77.4 0.9 86

word
spotting

20 judgment errors 24 0.3 80

TI-digit 10 connected 0.72 0.009 80
DEMO ScanMail examples /Audio/ScanMailExample
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TYPICAL ARTICULATION TEST RECORD� Fletcher’s method of nonsense phone error analysis

1500 Hz lowpass filtering

DATA MODELS

March 1928

(CVC syllable model)

(3 phone syllable model)

v � P
(vowels) = 0:909
 � P
(
onsonants) = 0:74 s3 = 0:505s � P
(phone) = (v + 2
)=3 = 0:796S � P
(syllable) = 0:515 ^S = 
v
 = 0:498
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THE METHOD� The data bases they used were formed from

– statistically balanced
– nonsense
– CVC, CV and VC syllable lists

where C represents a consonant and V a vowel� The syllable lists were spoken, and the listeners recorded what they heard� Probabilities-correct 
 and v for the sound-units were computed� The average fC,Vg speech-unit articulation probability s was computed
from the composition of fC,Vg units in the data base

(i.e. s = (2
+ v)=3 for CVC’s, s = (
+ v)=2 for CV’s)

– Measure s looks like a sufficient statistic
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WHAT THEY FOUND� Nonsense phones are recognized as independent units:

– The probability of correct recognition for the average phoneme s
accurately predicts the nonsense syllable score S
v
, whereS
v
 = 
2v= s3�This is a necessary but insufficient condition for independence� These statistical models are highly accurate� !!! Remember: This only applies to “nonsense words” !!!

QUESTIONS?
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THE NEXT STEP� Next they dissected s � P
orre
t(phone) into frequency
bands!

SPECIFIC DEFINITIONS
SYMBOL DEFINITION� gain applied to the speech
(�) � P
(consonantj�) consonant articulationv(�) � P
(vowelj�) vowel articulations(�) = [2
(�) + v(�)℄=3 average phone articulation for CVC’se(�) = 1� s(�) phone articulation errorf
 high– and low–pass cut–off frequencysL(�; f
) s for low-pass filtered speechsH(�; f
) s for high-pass filtered speech
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FLETCHER’S TWO BAND FORMULATION� Split the speech into low and high bands, having articulationssL(�; f
) and sH(�; f
)

� Fletcher proposed a linearizing transformation of the phone
articulations A(sL) +A(sH) = A(s)
– This is a nonlinear transformation of probabilities
– There was no guarantee that such a transformation exists

However, Fletcher’s intuition was correct
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WHAT THEY FOUND� For nonsense fC,Vg syllables the phone articulation transformation is:A(s) = log(1� s)log(emin) ;
with emin = 0:015 (1.5% error, or 98.5% correct)

– This relationship must have taken years to discover!� Solving for e � 1� s(A):e = eA(s)min = eA(sL)+A(sH)min = eA(sL)min eA(sH)min� In terms of the error probabilities e = 1� s, eL = 1� sH andeL = 1� sL: e = eLeH :
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FLETCHER’S TWO BAND EXAMPLE� If we have 100 spoken sounds, and 10 errors are made while listening to
the low band, and 20 errors are made while listening to the high band,
then e = 0:1� 0:2 = 0:02;
namely 2 errors will be made when listening to the full band, sos = 1� 0:02 = 0:98S = s3 = 0:941

� This is an unexpected, simple, and amazing result

– What does this mean? Why does it turn out this way?

DEMO of the the McGurk effect
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THE FLETCHER-STEWART MULTI-CHANNEL MODEL� Fletcher 1921 generalize the two-band case to K = 20 frequency bands1� s = e1e2 � � � ek � � � eK � evisual= (1� s1)(1� s2) � � � (1� sK) � (1� svisual)
where ei � 1� si
–This formula forms the basis of articulation index theory
–Why K = 20 bands?

Each band equals 1mm along the basilar membrane� I have added a visual channel, to account for the McGurk effect
(Channel 21)� Probability of error ei models events, as in the visual example
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DENSITY OF ARTICULATION PER CRITICAL BAND� This plot is the ratio of D(f)=�(f), where D(f) is the articulation densityD(f
) � �AL�f
 ; K AI bands�(f) = the critical ratio [/ cochlear filter bandwidth (ERB)]
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MODEL OF BAND EVENT ERRORS� When the SNR is varied they found that the event-error isek = eSNRk=Kmin

where SNRk is the signal to noise ratio in dB, divided by 30, such that

SNRk � 8>>>>>><>>>>>>: 0 20 log10(snrk) < 020 log10(snrk)=30 0 < 20 log10(snrk) < 301 30 < 20 log10(snrk):
9>>>>>>=>>>>>>;

Thus 0 � SNRk � 1:� Total error: e = e1e2 � � � eK = e(SNR1+SNR2���SNRK)=Kmin� The speech SNR in dB (not the energy) determines the event errors ek,
and thus the phoneme articulations = 1� e1e2 � � � eK
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AI AS A CHANNEL CAPACITY� Since Pk(log snrk) = log(Qk snrk)A � 1K Xk SNRk / log 0BB�Yk snrk1CCA1=K (1)

� and from Shannon (for the Gaussian channel)C = Z1�1 log2[1 + snr2(f)℄df; (2)
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TALKER PRODUCTION ERRORS� What determines smax = 1� emin?� Utterance talker mispronunciations, as defined by 32 listeners� Errors are distributed like Zipf’s Law [� � �N=NT � 0:6e�4:48Pe]
35% of the utterances have no error
33% have > 10% error, 10% > 35% error, 5% > 50% error
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SOURCES OF ERROR� Talker production errors

– Production errors are defined by token utterances error over listeners

– Once poor utterances are identified, they may be selectively removed� This method allows us to control the gross error rate

– With this method we can obtain a 100% score in the clear� The price for this is a reduced Nutteran
es� Listener errors (after selectively removing production errors)

– Listener bias may be determined from individual confusion matrices

– This bias can be a function of the production error threshold� The main effect is on L2 listeners
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EXAMPLE CALCULATIONS
Wide-band channel vs. SNR
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THE RECOGNITION CHAIN� The cochlear critical bandwidth defines the SNRk� The event-error model: ek / eSNRkmin (SNR in dB units)� The average-phone articulation model:s = 1� e1e2 � � � ek � � � eK� The nonsense CVC syllable articulation model: S = s3� Heuristic degree of freedom context models Boothroyd (see discussion Allen 1994)

– Word: W = 1� (1� S)j
– Sentence: I = 1� (1�W )k
– Sentence with context: C = 1� (1� I)l� Layers of context:
– j depends on the ratio of words to pseudo-words in the corpus,
– k depends on the number of salient words in a sentences,
– l depends on the word salience and topic context.
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COMPOSITION LAWS� Rules regarding �i P (i)error versus product �i P (i)
orre
t?
– Parallel processing: Pe = �kek� Errors in many bands have no effect� One band with small error (i.e., ek = 0) dominates

e.g., e = eLeH ; e = e1e2 � � � eK; the McGurk example

– Serial processing: P
 = �ksk� All items of a string must be correct for success
e.g., S
v
 = 
v
 � s3; S
v � s2� HSR seems to be a problem in combinatorics,

of elementary pre-phonic events.
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HOW WE RECOGNIZE SPEECH?� Hierarchical “bottom up” analysis� Accurate statistical models of performance at each stage
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� Entropy drops (i.e., context is integrated) in stages
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SUMMARY OF MODEL RESULTS� Hierarchical probability relations:
band SNR !

band errors (events) !

phoneme errors !

syllable errors !

nonsense word errors !
true word errors, etc.� The HSR error is established well before language is accessed!

HSR error depends only on the SNR in bands
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SPEECH ENTROPY VS. THE WIDEBAND SNR� P
(H;SNR) Miller, Heise and Lichten 1951� Many of the results of MHL51 expand on the AI model
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GRAMMATICAL CONTEXT� Five groups of five words that form grammatical sentences:

Don Brought His Black Bread
He Has More Cheap Sheep
Red Left No Good Shoes
Slim Loves Some Wet Socks
Who Took The Wrong Things� Tests:

5 word lists
25 word
25 words with grammatical context

Example: He left no black socks
25 words reverse order

Example: Socks black no left he.
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GRAMMATICAL CONTEXT� Results of tests
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CONFUSION MATRIX PARTITIONING� Miller & Nicely 1955 Confusion Matrix (Table III)

– MN55 established a natural phone hierarchical clustering:

UNVOICED VOICED NASALS
RESPONSE

S
T

IM
U

LU
S

“This breakdown of the confusion matrix into five smaller matrices . . . is
equivalent to . . . five communication channels . . . .” –Miller & Nicely 1955
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MILLER’S BINARY FEATURES� Miller & Nicely derived binary consonant features [i.e., events]

“ . . . the impressive thing to us was that . . . the [binary] features were
perceived almost independently of one another.” –Miller & Nicely 1955
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FINDING THE AI FOR MILLER NICELY TALKERS� Average spectrum for female talkers
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TRACE OF MILLER NICELY AND THE AI� Next we look at the average PI function vs. AI
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SYMMETRIC COMPONENT OF PC(SNR)� We stand to learn from linear operations on Pij(snr)
Symmetric: S
(snr) � [Pij(snr) + Pji(snr)℄=2
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SKEW-SYMMETRIC COMPONENT OF PC(SNR)� Skew: A
(snr) � [Pij(snr)� Pji(snr)℄=2
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SVD REPRESENTATION OF THE PERCEPTUAL SPACE� 4dim SVD perceptual representation of the confusion matrix
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TEMPORAL RESOLUTION OF PHONE RECOGNTION� Phones are recognized in on a 10 ms time scale (Furui 1986)
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WORD SEMANTICS: IP DEFINITION� 704 isolated words were truncated in 50 ms steps Van Petten 1999� Isolation point is defined as the time of the discontinuity in recognition
Expt. I – Neutral sentences: “The next word is test-word.”
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WORD SEMANTICS: IP VS. DURATION� Isolation point vs. word durations (real words, no sentence context)
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ERP MEASURE OF CONTEXT RE IP� Expt. II – Event related scalp potential (N-400 ERP) re IP, from Exp. I
Sentence semantics effects
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� Words are recognized on a syllable by syllable basis, within 50 ms� Context is recognized on a syllable by syllable basis, within 200 ms
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FROM CONTINUOUS TO DISCRETE

Φ Ψ
OBSERVER

PHYSICAL PSYCHOPHYSICAL

CONTINUOUS DISCRETE

� �-domain signals
Speech signal
Cochlear filter outputs
Neural rate
Voltage in cochlear nu-
cleus cells

� 	-domain objects
Words
Syllables
Phonemes
Events [Miller’s features]

CATEGORIAL PERCEPTION� Meaningful words are recognized before they end� Syllables are recognized within 50 ms
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SUMMARY� Miller & Nicely found 5 independent channels, described by
discrete events [Miller’s features]� Speech is recognized in layers:
SNRk ) events ) phones ) syllables ) words ) . . .
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� Language model performance is independent of noise robustness!� To study HSR, entropy must be controlled� Speech psychophysics is an important tool for studying HSR
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FUTURE GOALS� Use psychophysics to gain insight into event extraction� The next break through:

– More robust ASR

– An event extracting hearing aid

This talk may be found at:

http://auditorymodels.org/jba/PAPERS/ICASSP/
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