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WHAT | WANT TO SHOW:

e Biological systems are the ultimate information processors
e HSR Is a bottom—up, divide and conquer strategy

— We recognize speech based on a hierarchy of context layers

— As in vision, entropy decreases as we integrate context
e Humans have an intrinsic robustness to noise and filtering

— Robustness is not due to semantic context effects
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HOW WE RECOGNIZE SPEECH?

e Hierarchical “bottom up” analysis

e Accurate statistical models of performance at each stage
Recognition level

IBM-Watson Jan 16, 2004

S T T T

Cochlea Event Phones Syllables Words
ayer Layer

AL g o o

= © Qs

LL —l —l
SNR € S S W

Analog objects 277 Discrete objects
"Back-end"

"Front—end"

e Entropy drops (i.e., context is integrated) in stages
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DEFINITIONS

v/ phone A consonant (C) or vowel (V) sound
word A meaningful phone or phone sequence (i.e., cat = CVC)
phoneme The replaceable set of phones which leave a word meaning invariant
recognition Probability measure P, of correct phoneme identification

y/ articulation Recognition of “nonsense words”

v/ intelligibility Recognition of words (i.e., meaningful speech)
robustness Relative recognition with filtering and noise
confusion matrix Table of identification frequencies N,. = N,,
articulation matrix A confusion matrix composed of nonsense sounds

y/ articulation event A discrete subunit of articulation [e.g., Voicing: /ba/ vs. /pa/]
trial A single presentation of a set of events
state A values of a set of events at some instant of time

state machine
noiseless state machine

A machine (program) that transforms from one state to another
A deterministic state machine

context
message

Coordinated combinations of events within a trial
Specific information transmitted by a trial

Dn
information density

entropy

Probability of event n, of N possible events
Inzlogz(l/pn)’ n=1,.---,N

N
Average information: H = Y p,I,

n=1
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KEY HSR STUDIES

e The first articulation experiments date from Lord Rayleigh’s 1908 and
George Campbell 1910 phoneme identification experiments

e A basic probabilistic approach was developed by Stewart & Fletcher 1921
— Detailed review of Fletcher’s Al theory: Allen IEEE 1994

e French and Steinberg 1947 WWII studies

e Shannon’s Information theory 1948+

e G.A. Miller, Heise and Lichten 1951; G.A. Miller & Nicely 1955

e Language and communication G.A. Miller, 1951 McGraw Hill
Miller first introduces IT to language modeling, following Shannon

e Boothroyd JASA 1968; Boothroyd & Nittrouer JASA 1988
e® Bronkhorst et al. JASA 1993, 2002
e VVan Petten et al. 1994

e Detailed review chapter Allen 2003
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MOTIVATION
e Results of Lippmann 1997, sorted by Error Ratio
% Error Error
Corpus | Size in Words Conditions Machine| Human |Ratio
Alphabetic 26 20-talkers 8-listeners | 5.0°/ated | 1 geontinuous | 3
Resource 1000 null grammar 17 2 8
WSJ-NAB 5000 quiet (trained) 7.2 0.9 8
Switchboard 14,000 spontaneous (tel. BW) 43 4 11
WSJ-NAB 5000 10 dB (trained) 12.8 1.1 12
WSJ-NAB 65,000 close mic 6.6 0.4 16
WSJ-NAB 65,000 omni mic 23.9 0.8 30
Resource 1000 word—pair grammar 3.6 0.1 36
WSJ-NAB 5000 quiet (not trained) 42 0.9 47
WSJ-NAB 5000 22 dB (not trained) 77.4 0.9 86
word 20 judgment errors 24 0.3 80
spotting
TI-digit 10 connected 0.72 0.009 80

DEMO ScanMail examples ...
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TYPICAL ARTICULATION TEST RECORD
¢ Fletcher's method of nonsense phone error analysis

March 1928

DATE | 3‘/“3, |
—

ARTICULATION TEST RECORD

[_svu.aal..z ARTICULATION I1.5% J

TITLE OF TEST RecTice Jesrs

/connmoru TESTED /S0~ Lok /orss FiTER |

1500 Hz lowpassfiltering

OBSERYED

OBSERYED CALLED OHSERYED CALLED

1] THE FIRST GROUP |9

(Zepa’v

,pafz. ,oa'?‘/)’ A5b V 454
/_ [d

NS 4 .
2 | CAM YOU HEAR p?GA d ”@ ﬂ@ Jéé‘fla SrZ
7 7
311 WILL NOW EAY Sery g Jenq} /'a'cé v /'o'c/l' Fach Y Fach
Cd - "
4 | A8 THE POURTH whRITE 6‘4474( N / f-’ﬁq’fﬂ g 7‘;;4'”; -;‘-Aa‘/ v ﬁéa’/
s | wriTE Down 2ep?? o

tab Y fab Ipaf'z Y ’£af'.z

DATA

S = P.(syllable) = 0.515
v = P.(vowels) = 0.909

c = P.(consonants) = 0.74

MODELS

S = cve = 0.498 (CVC syllable model)

s = P.(phone) = (v + 2¢)/3 = 0.796
s = 0.505 (3 phone syllable model)
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THE METHOD

e The data bases they used were formed from

— statistically balanced
— nonsense

— CVC, CV and VC syllable lists
where C represents a consonant and V a vowel

e The syllable lists were spoken, and the listeners recorded what they heard

e Probabilities-correct ¢ and v for the sound-units were computed

e The average {C,V} speech-unit articulation probability s was computed
from the composition of {C,V} units in the data base

(i.,e. s = (2¢ + v)/3 for CVC’s, s = (¢ 4+ v) /2 for CV's)

— Measure s looks like a sufficient statistic
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WHAT THEY FOUND

e Nonsense phones are recognized as independent units:

— The probability of correct recognition for the average phoneme s
accurately predicts the nonsense syllable score S.,., where

Seve = v

:33

x This IS a necessary but insufficient condition for independence
e These statistical models are highly accurate

e !!l Remember: This only applies to “honsense words” !!!

QUESTIONS?
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THE NEXT STEP
e Next they dissected s = P.orrect(phone) into frequency

bands!
SPECIFIC DEFINITIONS
SYMBOL DEFINITION
o gain applied to the speech

c(a) = P.(consonant|a)
v(a) = P.(vowel|a)

consonant articulation
vowel articulation

s(a) = [2¢(a) + v()]/3
e(a) =1— s(a)

average phone articulation for CVC’s
phone articulation error

fe

high— and low—pass cut—off frequency

s, (a, fe)
SH(a7 fe)

s for low-pass filtered speech
s for high-pass filtered speech
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FLETCHER’S TWO BAND FORMULATION
e Split the speech into low and high bands, having articulations

SL(a, fc) and SH(a, fe)

e Fletcher proposed a linearizing transformation of the phone
articulations

A(s;) + A(sy) = A(s)
—This is a nonlinear transformation of probabilities

— There was no guarantee that such a transformation exists
However, Fletcher’s intuition was correct
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WHAT THEY FOUND
e For nonsense {C,V} syllables the phone articulation transformation is:
log(1 — s)

log(emin) ,
with e,,5,, = 0.015 (1.5% error, or 98.5% correct)

— This relationship must have taken years to discover!

A(s) =

e Solvingfore =1 — s(A):
A(S) A(SL)+A(3H) L A(S ) A(SH)

€ = €min — €min — emzn €min

e In terms of the error probabilitese =1 — s, e, =1 — s, and

eLzl—sL.

e = €€

L—H*
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FLETCHER'S TWO BAND EXAMPLE

e |If we have 100 spoken sounds, and 10 errors are made while listening to
the low band, and 20 errors are made while listening to the high band,
then

e = 0.1 x 0.2 = 0.02,

namely 2 errors will be made when listening to the full band, so
s=1—0.02 = 0.98
S = s® =0.941

e This is an unexpected, simple, and amazing result

— What does this mean? Why does it turn out this way?

DEMO of the the McGurk effect
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THE FLETCHER-STEWART MULTI-CHANNEL MODEL

e Fletcher 1921 generalize the two-band case to K = 20 frequency bands
l1—s=e1ez:--ep---eg X eyigual
= (1—s51)(1—82):---(1 —sk) X (1 — Syisual)
where
€e;, = 1 — S;

—This formula forms the basis of articulation index theory
—Why K = 20 bands?

Each band equals 1mm along the basilar membrane

e | have added a visual channel, to account for the McGurk effect
(Channel 21)
e Probability of error e; models events, as in the visual example
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DENSITY OF ARTICULATION PER CRITICAL BAND
e This plot is the ratio of D(f)/x(f), where D(f) is the articulation density

D(f.) = %’;L, K Al bands

C

k(f) = the critical ratio [oc cochlear filter bandwidth (ERB)]

X 107 . . AI blanldlpler critical bénd

CS2F N -

=

o1 .
0 AN R NS I
10 10° 10"

FREQUENCY [kHZz]
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MODEL OF BAND EVENT ERRORS

e \When the SNR is varied they found that the event-error is
SNR, /K

€L = €min

IBM-Watson Jan 16, 2004

where SNRy, is the signal to noise ratio in dB, divided by 30, such that

0 20logqy(snry) < O
SNRy = { 20log;,(snrg)/30 0 < 20logqy(snry) < 30
1 30 < 20logy(snrg).
Thus
0 < SNRg < 1.

e Total error:

€E = €1€2* " €EK — €,in

e The speech SNR in dB (not the energy) determines the event errors ey,
and thus the phoneme articulation

s=1—eey---ex
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Al AS A CHANNEL CAPACITY

® Since xx(log snri) = log (g SNr)

! SNR 1 K 1
= — > IIsnr
SN o og 0 2
e and from Shannon (for the Gaussian channel)
C = |22, loga[1 + snr’(f)]df, (2)
=4 _ A(snn): Iogz[max(l syl |
%2_ C(snr) Iog2(1+snr )
O Qpus-mzzos— P

20 log(snr) [dB]
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TALKER PRODUCTION ERRORS

e \What determines s,,,p = 1 — €min~?
e Utterance talker mispronunciations, as defined by 32 listeners

e Errors are distributed like Zipf's Law [- - - N/Np = 0.6e~4-48%¢]

35% of the utterances have no error
33% have > 10% error, 10% > 35% error, 5% > 50% error

Utterance production errors, by subject

100 —————
AnS
‘ VeK
80’*1."./..'"-_ AIC |
_ -~ ‘ — AaR
g — JoA
q:) 60+ — AIG ||
= BaH
> Sar
E 407 .. ALL |
< Eq.
o CHRY
a "2
20¢ «;_”‘ y
O I !v nmm
10° 10°

utterance rank—order [%]l. sorted bv error
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SOURCES OF ERROR

e Talker production errors

— Production errors are defined by token utterances error over listeners
— Once poor utterances are identified, they may be selectively removed
* This method allows us to control the gross error rate
— With this method we can obtain a 100% score in the clear
x The price for this is a reduced N, ierances

e Listener errors (after selectively removing production errors)

— Listener bias may be determined from individual confusion matrices
— This bias can be a function of the production error threshold
* The main effect is on L, listeners
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EXAMPLE CALCULATIONS
Wide-band channel vs. SNR

Phone articulation/mm Phone and CVC model
1 1 1 1 :
. s=1-0.015"
= 0.8 o8 I
2 <
5961 7706
“ 0.4t =0.4 o
ad <
Z 173 S=s®
0oz e 0.2 R
oS | =TT ‘
Ql=r= : : 0 :
0 10 20 30 0 0.5 1
SNR, Al = avg(SNR)/30
1 del 1 — Effect of Context
0.8 0.8
w
30.6- =06
<oa4 [ agr | no0.4
W=1-[1-S(A)]™ n
0.2ff T 0.2
0 : ok
0 0.5 1 0 1

A
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THE RECOGNITION CHAIN

e The cochlear critical bandwidth defines the SNR,

SNR
® The event-error model: eg €min k

e The average-phone articulation model:
S p— ]_ —elezoooekoooeK

(SNR in dB units)

e The nonsense CVC syllable articulation model: S = s

e Heuristic degree of freedom context models Boothroyd (see discussion Allen 1994)
—Word: W =1 — (1 — 8)!
—Sentence: I =1 — (1 — W)k
— Sentence with context: C =1 — (1 — I)}

e Layers of context:

— 7 depends on the ratio of words to pseudo-words in the corpus,
— k depends on the number of salient words in a sentences,
— [ depends on the word salience and topic context.
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COMPOSITION LAWS

e Rules regarding II; Péﬁzor versus product II; Pééz.rect?
— Parallel processing: P. = [l,e;

* Errors in many bands have no effect
* One band with small error (i.e., ¢, = 0) dominates
e.g., e=cee,;e=eey- ek, the McGurk example
— Serial processing: P, = Il;s;,
x All items of a string must be correct for success
e.g., S.pe = cvc =~ 8% Spy A S
e HSR seems to be a problem in combinatorics,

of elementary pre-phonic events.
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HOW WE RECOGNIZE SPEECH?

e Hierarchical “bottom up” analysis

e Accurate statistical models of performance at each stage
Recognition level
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e Entropy drops (i.e., context is integrated) in stages
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SUMMARY OF MODEL RESULTS

e Hierarchical probability relations:
band SNR —
band errors (events) —
phoneme errors —
syllable errors —
nonsense word errors —

true word errors, etc.

e The HSR error is established well before language is accessed!
HSR error depends only on the SNR in bands
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SPEECH ENTROPY VS. THE WIDEBAND SNR
® P.(H,SNR) Miller, Heise and Lichten 1951

25 Human Speech Recognition

e Many of the results of MHL51 expand on the Al model

PERCENT CORRECT

10%

=
o

10

=

- o

CVC data [Table I: Miller, Heise and Lichten (1951)]

H [BITS/TASK]

N~ S e —————— . 418
~— N e TTN—— TS T AVSJ
........................................................................................ qu|et
NGOG NG e =6 N\
..... N S N T D ~,
.................. SJ
~ - WIDEBAND by i
N X188 N =15 O ONC ]
....................... SNR=-21 NN\ N~ ]
=> Chance
(e,2™
2 4 6 8 10 Al
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GRAMMATICAL CONTEXT

e Five groups of five words that form grammatical sentences:

Don Brought His |Black |Bread
He |Has More |Cheap |Sheep
Red | Left No Good |Shoes
Slim [Loves |Some|Wet |Socks
Who | Took The |[Wrong | Things
® Jests:
5 word lists
25 word

25 words with grammatical context
Example: He left no black socks

25 words reverse order
Example: Socks black no left he.
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GRAMMATICAL CONTEXT

e Results of tests

100
— B8O —
&
(1]
o
o
O 60— —
&
I,._
=
Ll 40 -
Q
o O— —~O 5-WORD VOCABULARY
E 50 — ®—e SENTENGES ]
[~ =\ 25-WORD VOGABULARY
A—A PSEUDO-SENTENGES
0 I | | I l
~16 -12 -8 -4 0 + 4 +8

SIGNAL -TO-NOISE RATIO IN DECIBELS
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CONFUSION MATRIX PARTITIONING
e Miller & Nicely 1955 Confusion Matrix (Table IlI)

— MN55 established a natural phone hierarchical clustering:

TABLE IIL. Confusion matrix for S/N=—§6 db and frequency response of 200-6500 cps.

b L k f 0 s § b d g ? 4] z 3 " ”
P 80 43 64 ' 17 14 6 2 | 1 1 1 T g
{ 71 8 55 | 5 9 3 8 | 1 1 2 I 2 3
k 66 76 107 | 12 8 9 4 | 1 o1
n ! 8 12 9 : 75 48 1t 1 2 1 2 2 '
3 9 19 17 16 104 64 32 7 | s 4 5 6 4 5 '
- s 8 5 4 1 23 39 107 45 | 4 2 3 1 1 3 2 1
3 S 1 6 3 | 4 6 29 195 3 | 1
S b 1 5 4 4 136 10 9 ' 41 16 6 1t s 4
- d 8 | 5 8 45 ! 11 20 22 26 | 1
N I'4 2 I 3 63 66 I 3 19 37 56 I 3
T T T T 2____5___7_48__3__5_Ihs__[s_h____' 4
3 6 I 31 6 17 8% 38 21 5 | 6 4
2 1 1 1 1 7 20 27 | 16 28 94 44 | 1
3 1 2% 18 1 3 8 45 129 2
m 1 by 4 1 3 i 46
n 4 I 5 2 7 1 6 | 471 163
| |
<> > <> S <o—&
UNVOICED VOICED NASALS
RESPONSE

“This breakdown _of the confusion matrix into five smaller matrices .. .Is
equivalent to ... five communication channels ....” —Miller & Nicely 1955
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MILLER'S BINARY FEATURES

e Miller & Nicely derived binary consonant features [i.e., events]

TasLe XTX. Classification of consonants used to
analyze confusions.

Consonant Voicing Nasality Affrication Duration  Place

P 0 0 0 0 0
£ 0 0 0 0 1
k 0 0 0 0 2
f 0 O 1 0 0
a 0 0 1 0 1
5 0 0 1 1 1
) 0 0 1 1 2
b 1 0 0 0 0
d 1 0 0 0 1
g 0 0 0 2
v 1 0 1 0 0
L) 1 0 1 0 1
z 1 0 1 1 1
3 1 0 1 1 2
" 1 1 0 0 0
n 1 | 0 0 1

“...the impressive thing to us was that ... the [binary]| features were
perceived almost independently of one another.” —miller & Nicely 1955
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FINDING THE Al FOR MILLER NICELY TALKERS

e Average spectrum for female talkers

Wideband RMS: g:Speech= 12; r:Noise RMS= 0 [dB re 1V]

o

=
o

Spectral level: y: 5-Women average, r——: noise [Volts]

=
oI

N

10° 10
frequency (kHz)

(-
© 1
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TRACE OF MILLER NICELY AND THE Al

e Next we look at the average PI function vs. Al

P (Al)
1 ! === T =
)= T T
// e
0.9- Y // s,
//// /// 4 - ////
L / Zo .
<_ELO 0.8 /’// z2.727
8 O 7- /// / - : 1
o b 77
‘l| /l/ , ////
0.6 A a
af_ /;l /8 /;/
\E-o 5' I//l / ,/;/ 1
) ’/
8 1 4
£0.4F X .
| .
Al III, D
=0.3F / N
< 7
020 il H
' =#= 1-0.015"
01 Q= meani(Pi) |
__. P(A)
| | | I
0 0.2 0.4 0.6 0.8 1

Al
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SYMMETRIC COMPONENT OF Pr(SNR)

e \We stand to learn from linear operations on F;;(snr)
Symmetric: S.(snr) = [P;;(snr) + Pj;(snr)]/2

1 1
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SKEW-SYMMETRIC COMPONENT OF Po(SNR)
® Skew: A.(snr) = [P;;(snr) — Pj;(snr)]/2

S onfPal o poaf/Tal - o/Kad ) o /Fale—~
(io 0 ét 0 %— 0 % 0 &
<1} f-a} o2l doaf
0 0.5 1 0 05 1 0 0.5 1 0 0.5 1
o1l/Thaw/ | o1{/Saw/ | oi|{/Shaw/ | o1{/Ba/ =
0] N N S0 0 =0
0 0.5 1 0 05 10 0.5 10 0.5 1
oif/Dal | oaf/Gal | oa{Na,—~_ | 01{/Thel
0 @ 0 % 0 & 0 @
S0 =0 Y QA ] 20
0 0.5 1 0 05 10 0.5 10 0.5 1
0.1 /Za/ C : 0.1 /Z\]a/ N : 0.1 M&__ 0.1 /Na/ S i
0 %: 0 %‘ of ‘ 0| S —
3 I Tt X ) EE S S PR RRRRRE
0 0.5 1 0 0.5 10 0.5 10 0.5 1

(SNR+20)/30
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SVD REPRESENTATION OF THE PERCEPTUAL SPACE

e 44m SVD perceptual representation of the confusion matrix

Dimensions 2 vs. 3

Dimensions 2 vs. 4
057 R R SRR -+ 0.4

g
.

¥
"

+

| 02| 5 ————————— o 6 Lo
0.5 ; ; -0.4 : i i ;
-0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4
Dim-2 Dim-2

DEMO
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TEMPORAL RESOLUTION OF PHONE RECOGNTION

e Phones are recognized in on a 10 ms time scale (Furui 1986)

(a) Initial Truncation (b) Final Truncation
100 |+ Dreerneed j ' 100 | '

~ 80 80 |
S :
0 |
o |
S 60 60 |
c |
o B =
§ 40 40 L. :'d' .......... g_ ...........................
= X o
c v —_
5 § S 5 g

20 20 ...... -9:’ ......... ............ .....

0 3 1 : : 0 : 1 : :
-10 0 10 20 -10 0 10 20

Truncation point (ms)

==O == Syllable === Vowel —#&— Consonant
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WORD SEMANTICS: IP DEFINITION

e 704 isolated words were truncated in 50 ms steps Van Petten 1999

e |solation point is defined as the time of the discontinuity in recognition
Expt. | — Neutral sentences: “The next word is test-word.”

ACCURACY OF IDENTIFICATION VERSUS GATE TIME
100

©
o
|

40—~

20 -

WORD RECOGNITION SCORE (%)

0 | | |
-150 =100 -50 [P 50 100 150

GATE TIME (ms)

e Categorical perception



IBM-Watson Jan 16, 2004 37 Human Speech Recognition

WORD SEMANTICS: IP VS. DURATION

e |solation point vs. word durations (real words, no sentence context)
HISTOGRAMS OF WORD IP’s and DURATIONS

150
ISOLATION POINT (IP)
€
120+
®

) '\ DURATION
2 904
O
=
LL
@)
X
L 60
=
D
pd

30+

0 l-e@a-bea

400 800

GATE TIME (ms)
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ERP MEASURE OF CONTEXT RE IP
e Expt. Il — Event related scalp potential (N-400 ERP) re IP, from Exp. |

Sentence semantics effects

—— dolphins

Pay with ...

—— Cohort congruous dollars
—— Cohort incongruous  dolphins

e \Words are recognized on a syllable by syllable basis, within 50 ms
e Context is recognized on a syllable by syllable basis, within 200 ms
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FROM CONTINUOUS TO DISCRETE

PHYSICAL PSYCHOPHYSICAL

P —  OBSERVER — > W

CONTINUOUS DISCRETE
e d-domain signals e V-domain objects
Speech signal Words
Cochlear filter outputs Syllables
Neural rate Phonemes
Voltage in cochlear nu- Events [Miller’s features]
cleus cells

CATEGORIAL PERCEPTION

e Meaningful words are recognized before they end

e Syllables are recognized within 50 ms
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SUMMARY
e Miller & Nicely found 5 independent channels, described by

discrete events [Miller’s features]

e Speech is recognized in layers:
SNR; = events = phones = syllables = words = ...

Recognition level
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Cochlea Event Phones Syllables Words
er Layer

= 9 S S

= © ®

LL -l -
SNR ey S S W

Analog objects 277 Discrete objects
"Back-end"

"Front—end"

e Language model performance is independent of noise robustness!

e To study HSR, entropy must be controlled
e Speech psychophysics is an important tool for studying HSR
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FUTURE GOALS

e Use psychophysics to gain insight into event extraction
e The next break through:

— More robust ASR
— An event extracting hearing aid

This talk may be found at:
http://auditorymodels.org/jba/PAPERS/ICASSP/
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